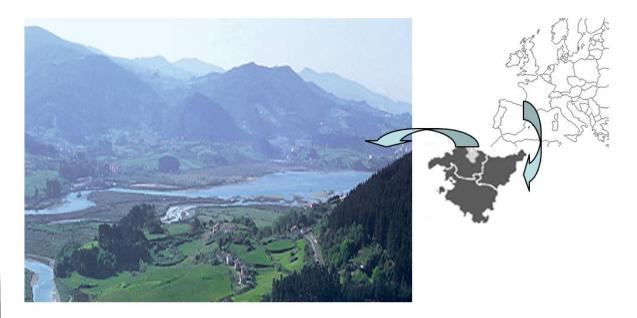


Ecosystem Services of the Basque Country

Implementation of ecosystem services as indicators for landscape management in the Basque Country, Spain

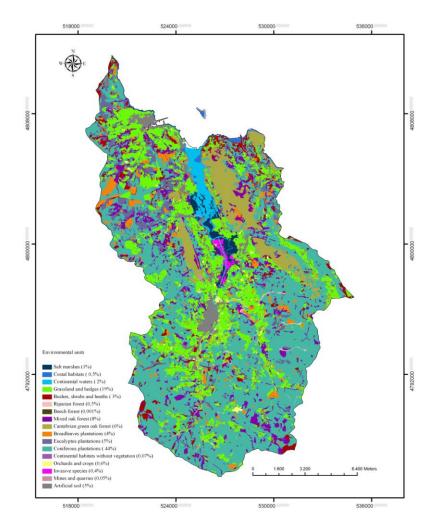
Dr Miren Onaindia. University of the Basque Country. UNESCO Chair on Sustainable Development and Environmental Education. Bilbao. Spain

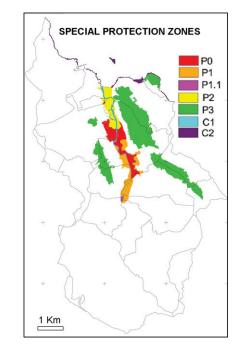
26th-28th October 2014, Dubai, United Arab Emirates


1- The Plan for Landscape Management of the Urdaibai Biosphere Reserve is updated including ecosystem services

Declared by UNESCO as a Reserve in 1984 Protected by low in 1989

220km2 ; 44,000 inh. Gernika





Master Plan for Use and Management

1993, revision in 2003, updated in 2014

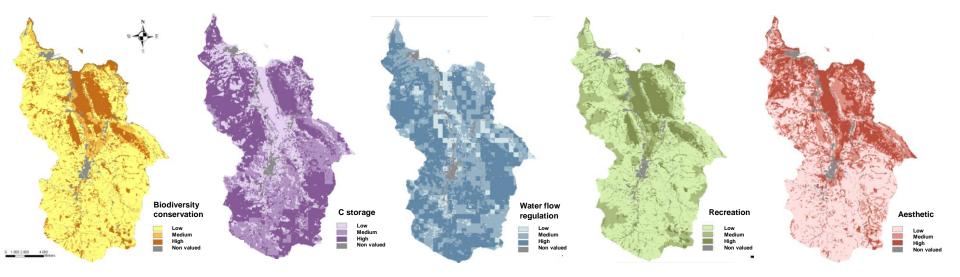
Outlines the uses and actions that are allowed in each area

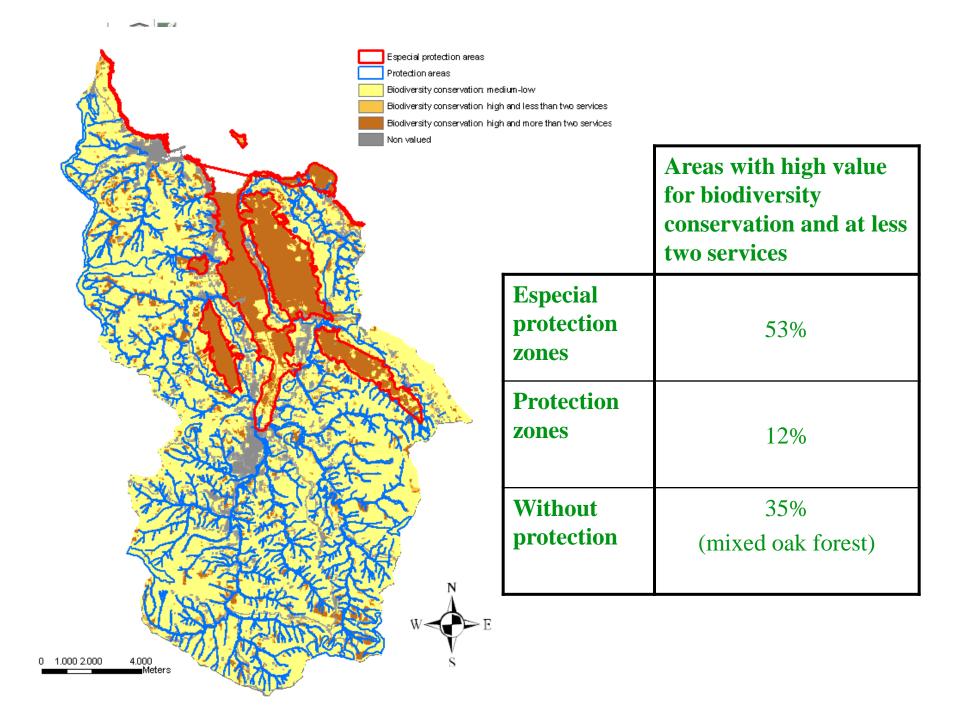
Core areas: coastal ecosystems, salt marshes and Cantaurian evergreen oak forests

Participatory process

Ecosystem Services of the Basque Country

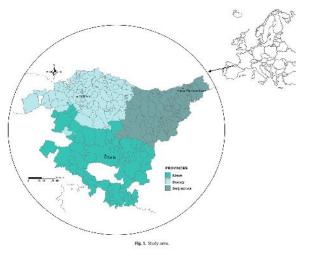
Proposed: the introducion of criteria to include ecosystem services




Question:

- which ecosystems are the most important producers of biodiversity and ecosystem services?

Maps of biodiversity and ecosystem services supply were used: carbon storage, water flow regulation, aesthetic value and recreation services


Results for management

- Natural forests are the ecosystems that most contribute to biodiversity and ecosystem services
 - Mixed oak forest will be include as a *core* area in the new Plan
 - The conservation of these forests will contribute to an increase of nearly 33% of the biodiversity hotspot, more than 40% of the carbon storage and almost 13% of the water flow regulation
- Onaindia et al. 2013. Environmental science and policy 33: 283-294 Onaindia et al., 2013. *Forest Ecology and Mangement* 289:1-9.

2-Socio-economic compensation for the provision of ecosystem services at municipality level

The contribution of the municipalities to the provision of ecosystem services is not considered, even though they are fundamental for human well-being

- Municipalities receive incentives and financial support from the regional government based on: inhabitants, GDP

Aim: Define an index of landscape multifunctionality based on ES

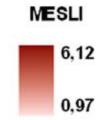
1,200 km², 250 municiplities, 2,200,000 inhabitants

Selected indicators of Ecosystem Services: 15 indicators for 11 ES

Table 1

List of selected ecosystem services and biodiversity values with their potential indicators and low and high performance benchmarks (Min. t. s., Max. t. s.: minimum and maximum value in entire time series data). References that use the indicator, or a similar indicator, are noted.

Services	Indicators	Low performance benchmarks	Target	References
Provisioning				
Food	DC: Density of head of cattle (N°/100 ha)	0	Max. t. s.	Burkhard et al., 2012; Kandziora et al., 2012
	AP: Agricultural production (Ton/ha)	0	Max. t. s.	Maes et al., 2012; European Commission, 2014
Raw materials	Timb: Timber in forest plantations (m ³ /ha)	0	Max. t. s.	Burkhard et al., 2012; Maes et al., 2012
Freshwater	RO: Runoff = renewable water supply (mm)	Min. t. s.	Max. t. s.	MEA, 2005
Regulating				
Global climate regulation	SCSB: Stored C in soil and biomass (Ton C/ha)	0	Max. t. s.	Maes et al., 2012; Kandziora et al., 2012; van Oudenhoven et al., 2012; Layke et al., 2012
Maintenance of soil fertility	OCS: Organic C in soil (Ton C/ha)	0	Max. t. s.	Maes et al., 2012
Local climate regulation	Et: Evapotranspiration (mm)	Min. t. s.	Max. t. s.	Burkhard et al., 2012; Kandziora et al., 2012; Layke et al., 2012
Water flow regulation	SWS: Soil water storage capacity (mm)	0	Max. t. s.	van Oudenhoven et al., 2012; Layke et al., 2012
-	SWI: Soil water infiltration capacity (cm/h)	0	Max. t. s.	Maes et al., 2012; Layke et al., 2012; Gomez-Baggethun and Barton, 2012
Water purification	RF: Cover of riparian forest in river margins (% in 25 m buffer)	0%	100%	Plieninger et al., 2012; European Commission, 2014
	NF: Cover of natural forest (% of municipality's surface)	0%	Max. t. s.	European Commission, 2014
Erosion prevention	Eros: Areas without erosion problems (% of municipality's surface)	0%	100%	Kandziora et al., 2012
Cultural				
Tourism	RTS: Density of rural tourism establishments (N°/km ²)	0	Max. t. s.	Burkhard et al., 2012; Kandziora et al., 2012
Biodiversity	· · ·			
-	SP: Special protection area (% of municipality's surface)	0	Max. t. s.	Maes et al., 2012
	HCI: Habitat of community interest (% of municipality's surface)	0	Max. t. s	Burkhard et al., 2012; Kandziora et al., 2012


 $MESLI = \sum_{i=1}^{11} \frac{Observed value_i - Low performance benchmark_i}{Target_i - Low performance benchmark_i}$

- All the indicators were transformed in a 0 to 1 scale
- When clear performance benchmarks do not exist we used the entire time series data to set both, the maximum and the minimum observed (years 2000-2010)
- These standardised indices were summed to obtain the Multiple Ecosystem Services Landscape Index (MESLI)

Urban/Rural

In general the higher the value of the index, socioeconomic status is worse

				Meters
)	10.000	20.000	30.000	40.000

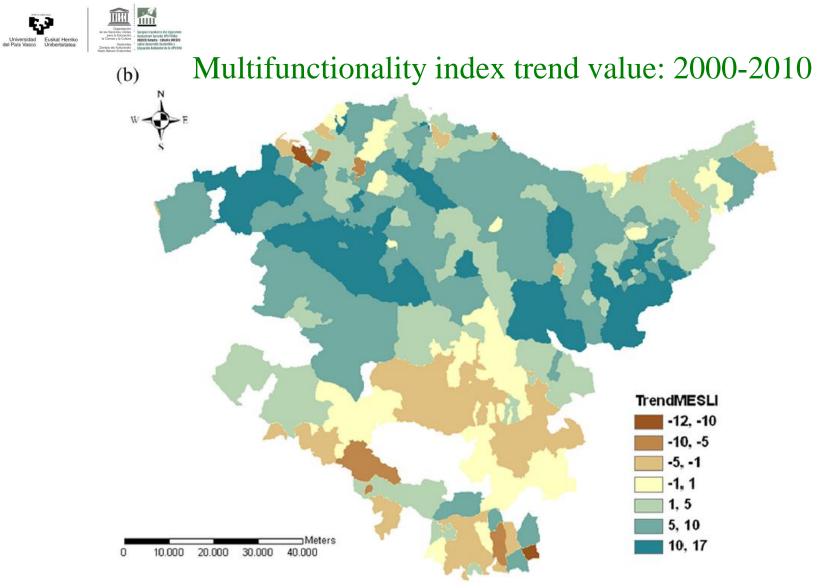


Fig. 2. Maps of the multiple ecosystem services landscape index (MESLI) (a) and TrendMESLI (b) by municipality.

Results for management

• The indicator is a tool for measuring the multifunctionality, and to develop a system of socio-economic compensation for the provision of ecosystem services at municipality level

• Recognising the contribution of the municipalities to human well-being has the potential to improve the socioeconomic situation and reduce the differences between them

Rodríguez-Loinaz et al., 2014. Journal of Environmental Mangement 147:152-163.

3- CONCLUSIONS

- The perspective of ecosystem services contributes to develop sound land-use policies and planning actions
 - Conservation Plans based on ecosystem services and biodiversity
 - Socio-economic compensation for landscape multifunctionality

• Important issues:

- Stakeholders ' participation and collaboration between researchers, technicians and politicians
- Development of technical tools: mapping, indicators, others (spatially explicit accurate information).
- Engagement in Networks

Thank you

www.ehu.es/cdsea

miren.onaindia@ehu.es